ECO-ENA Research Conference 2021

The relationship between US corn,

crude oil and ethanol prices

The International Conference of Economics & Agribusiness @ ECO-ENA www.eco-ena.ca

Theofanous, P., Swinkels, C. & Tremma, O. (2021)

Harper Adams University Land & Agribusiness Management Department

Rationale

- Product price peaks and volatility are influenced by crude oil prices (Bakhat and Würzburg, 2013).
- Connections between the crude oil market and agricultural production:
- CO major input for food production and distribution
- Production of biofuel affects the demand for the commodities →Thus, this could possibly lead to an increased use of food commodities. (Trujillo-Barrera et al., 2011)
- Serra and Ziberman (2013): studies regarding long and short-run relationships in the 3 markets are mixed.
- Internal and external factors that influence the commodity sector and could lead to price shocks
- Increase of food prices could lead to concerns about food supply and security

Food prices

- •OECD and FAO (2019): growing consumption of food commodities due to increased global population \rightarrow decrease in global food prices due to productivity improvements
- •Globally in 2019: corn largest agricultural commodity by volume, wheat and rice
- •Corn, sugarcane and vegetable oils: production of biofuel world-wide
- Food prices have developed a tendency to co-move with oil prices.
- FAO global food index: increased during 2006-2007 and spike in 2008
- •FAO, 2021; EIA, 2021a: In 2021, food price index increase coincides with increased crude oil prices

Reasons:

- 1. unfavorable weather circumstances
- 2. weak dollar exchange rate
- 3. high oil prices
- 4. an increase of biofuel use

Biofuel and crude oil

•Rapeseed, sunflower and palm oil: feedstock and major components of biodiesel (EIA, 2020).

- Market share of 37% of the total biofuel market on global level for 2020 (BP, 2020)
- •Ethanol main sources: corn and sugarcane global market share of 63% for 2020
- •Energy prices (biofuel and crude oil prices) are influenced by supply and demand
- •In 2018: OPEC accounted for 41% of the global production
- •US government's aim: to reduce greenhouse gas emissions (GHG)
- •Specifically, a global increase of 187 thousand barrels of biofuel per day in 2000 to 1841 thousand barrels in 2019.
- US produces 37.9% of the global biofuels, followed by Brazil at 24.1% (BP, 2020)
- •Increase of production between 2000-2009: governmental interventions, tax exemptions, subsidies and biofuel policies (Sorda et al., 2010)

US policies

•Rapeseed, sunflower and palm oil: feedstock and major components of biodiesel

•2005: Renewable Fuel Standards 1 (RFS1) specified the obligatory consumption of biofuels

• July 2010: second Renewable Fuel Standard (RFS2) policy

•Renewable Fuel Standards: aim to reduce the dependency on oil

•Energy Independence and Security Act of 2007: to reduce the oil consumption (EPA, 2015; Sorda et al., 2010)

• Biomass Program 2008: ims to reduce gasoline consumption by 20% in 2030 & produce corn-based cellulose-ethanol

Price transmission in the energy market

- Fowowe (2016): no evidence of a long-run relationship between the corn and oil prices.
- •Hassouneh et al. (2012) : the price of crude oil and sunflower oil drives biodiesel prices in the long and short-run
- •Asymmetry: prices increases in crude oil were transmitted faster than prices decreases in oil prices.
- •Adam et al. (2018): Evidence of a short-run relationship between crude oil and rice prices
- •Vu et al. (2019): corn use in ethanol played a major role in the impact on corn demand shocks on oil prices
- •Lucotte (2016) : no interlinkages between the food prices and the oil products
- •Marimpi (2014): stable long-run cointegration relationship between corn and crude oil prices
- •Hao et al. (2013) : corn prices drive diesel and soybean prices on the short-run while corn prices influence the biodiesel in the long-run

Research gap

Data

- Time series - monthly data

- Period covered: January 2000 to March 2021

- Data:

Crude Oil, US, West Texas Intermediate (WTI) 40' API prices given in \$/bbl and Corn (Maize) US, no.2, yellow, f.o.b. US Gulf ports given in \$/metric tons USDA database (2021): ethanol prices in f.o.b. prices based on \$/gallon

Methodology

1. Unit root test: Augmented Dickey-Fuller and Phillips - Perron	
2. Cointegration: Engle and Granger	
3. Bai-Perron test for multiple breaks	
4. Cointegration including structural breaks	
5. Error Correction Model	
6. Granger Causality test	

Data

Figure 2: LN_Crude_oil/LN_Ethanol/LN_Corn

Unit root tests

- Two models examined: including only a constant and including a constant and trend

- ADF unit root test: All series are stationary and do not have a unit root in both models

Integrated of order one I(1)

The null hypothesis can be rejected.

PP unit root test: All series are stationary and do not have a unit root.
 Integrated of order one I(1)
 The null hypothesis can be rejected.

Engle & Granger test

Corn – Crude Oil relation

 $LN_CORN = 2.52 + 0.63*LN_CRUDE_OIL$

(19.25) (19.42)

Adjusted R-squared: 0.60

ADF and PP unit root test on derived residuals: stationary on levels.

Crude oil – corn relation

Ln_Crude_oil = -0.78 + 0.95 * Ln_Corn

(-3.17) (19.42)

Adjusted R-squared: 0.60

ADF and PP unit root test on derived residuals: stationary on levels.

(1)

(2)

Engle and Granger test

Corn – **Ethanol relation**

 $LN_CORN = 4.82 + 0.45*LN_ETHANOL$

(128.91) (7.48)

Adjusted R-squared: 0.18

ADF and PP unit root test on derived residuals: non-stationary on levels \rightarrow no long run relation confirmed

(3)

Ethanol– corn relation

Ln_Ethanol = -1.53 + 0.41 * Ln_Corn (4)
(-5.58) (7.48)
Adjusted R-squared: 0.18
ADF and PP unit root test on derived residuals: non-stationary on levels → no long run relation confirmed

Bai-Perron test

-						Dates -		
Dependent	Independent	SupF		Scaled F-	Critical	structural		
variable	variable	(l+1)I1	F-statistic	statistic	Value	breaks		
Corn	Crude oil		9.45	18.91		2003M03,		
		(4 /3)			14.85	14.05	2006M10,	
						2010M09,		
						2013M11		
Crude Oil						2004M08,		
	Corn	(<mark>3</mark> /2)	10.91	21.82	14.03	2011M06,		
						2014M12		
Corn						2003M03,		
						2006M10,		
	Ethanol	(5 /4)	11.96	23.93	15.29	2010M07,		
						2013M09,		
						2016M11		
Ethanol						2005M08,		
	Corn	(<mark>3</mark> /2)	36.28	72.57	14.03	2008M12,		
						2017M10		

Engle & Granger test with breaks

Corn – Crude Oil relation

Ln_Corn= 3.98 + 0.17 * Ln_Crude_oil +0.05*Dum2003 +0.43*Dum2006 + 0.42 *Dum2010 - 0.41* Dum2013 (5)

(6.16) (1.84) (15.88) (16.44) (-15.49)

Adjusted R-squared: 0.90

ADF and PP unit root test on derived residuals: stationary on levels.

Crude oil – corn relation

 $Ln_Crude_oil = 0.59 + 0.65*Ln_Corn + 0.34*Dum2011-0.36*Dum2014$ (6)

(7.35) (4.28) (-7.83)

Adjusted R-squared: 0.67

ADF and PP unit root test on derived residuals: stationary on levels.

Engle & Granger test with breaks

Corn – Ethanol relation

Ln_Corn= 4.50 + 0.08 * Ln_Ethanol +0.11*Dum2003 +0.50*Dum2006 + 0.445 *Dum2010 - 0.45* Dum2013 (7)

 (2.95)
 (4.03)
 (19.28)
 (16.67)
 (-15.53)

 Adjusted R-squared: 0.89
 ADF and PP unit root test on derived residuals: stationary on levels.

Ethanol– corn relation

Ln_Ethanol= -0.88 + 0.26 * Ln_Corn +0.32*Dum2005 -0.17*Dum2008 - 0.58 *Dum2017 (8)

(5.05) (6.96) (-4.93) (-14.15)

Adjusted R-squared: 0.67

ADF and PP unit root test on derived residuals: stationary on levels \rightarrow long run relation confirmed

ECM/TERM

Corn - Crude oil:

ECT = -0.182 [-5.66]

The two series will return to the new equilibrium in 5.55 months after a shock from the crude oil prices to the corn prices.

Crude oil - Corn:

ECT = - 0.09 [-3.57]

The two series will return to the new equilibrium in about 11.1 months

Corn – **Ethanol relation**

ECT = *-0.160* [*-5.72*]

The two series will return to the new equilibrium in about 6.3 months

Ethanol– corn relation

ECT = -0.10 [-3.30]

The two series will return to the new equilibrium in about 9.8 months.

Granger causality test

Pairwise Granger Causality Tests			
Null Hypothesis:	F-Statistic	Prob.	Result
LN_CORN does not Granger Cause LN_CRUDE_OIL	3.39	0.04	Causality
LN_CRUDE_OIL does not Granger Cause LN_CORN	0.83	0.44	No causality
LN_CORN does not Granger Cause LN_ETHANOL	3.91	0.02	Causality
LN_ETHANOL does not Granger Cause LN_CORN	1.51	0.22	No causality

Discussion

- Bi-directional long-run relationship between corn and crude oil (Marimpi, 2014; Bakhat and Würzburg, 2013).
- Notable breakpoint periods found through the Bai-Perron test that could be related to US energy policies (Vu et al, 2009; EPA, 2020).
- Both ethanol and crude oil follow corn in the short-run
- Structural changes in the market have a strong impact on the changes in prices
- All prices have different recovery periods to find a new equilibrium corn prices recover relatively faster
- Crude oil and ethanol follow corn prices in the short-run (Chiu et al, 2016)
- PT needs to be accounted when policy makers are aiming to eliminate food and fuel linkages

Limitations - Further research

- Different data sources
- Linear models selected
- Bivariate models tested
- Monitor PT after the introduction of a new policy
- To examine other commodity prices such as biodiesel based on the long and short-run relationship
- Applied on a world-wide context
- Asymmetries to be tested in the price transmission process

Thank you very much for your attention!