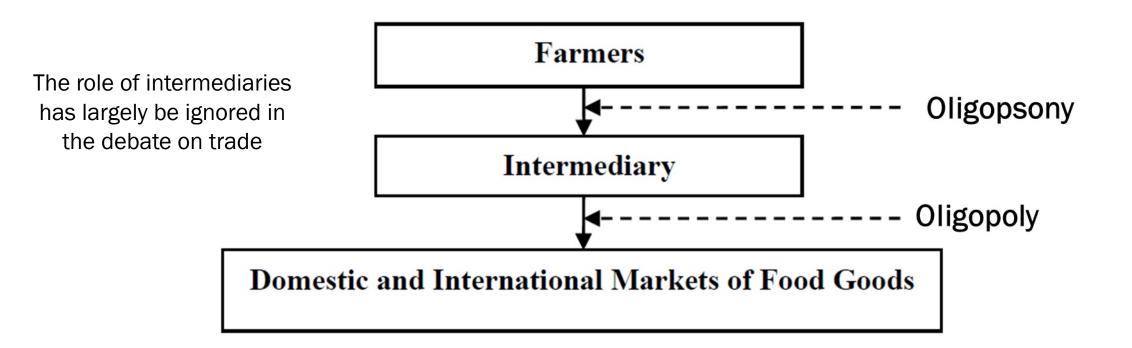

EXPLAINING LACK OF AGRICULTURAL TRADE LIBERALIZATION: A NETWORK APPROACH

DANIEL MAY

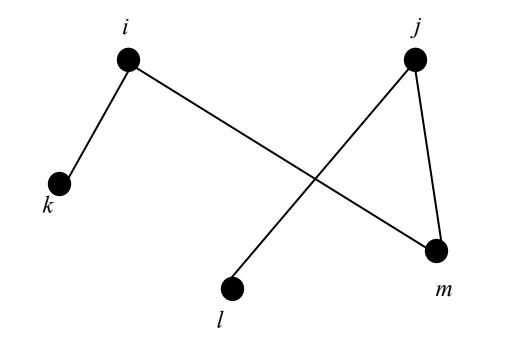

CONTENT

- Lack of free trade in agriculture
- The role of intermediaries in the supply chain (market power)
- The International Trade Network Model
- Simulation: effect on international trade of finished food goods
- Extensions

I. LACK OF FREE TRADE IN FOOD AND AGRICULTURAL SECTOR

- Liberalisation of trade in agricultural and food products has been difficult with tariffs still at high levels
- Unsuccessful outcome of a global agreement (Doha)
 - Protectionism
 - Interest groups against liberalisation
- Bilateralism is not leading to global free trade either
- We offer an alternative explanation that have not been explored by the related research.
- This is related to the supply chain of the food and agricultural sector

II. THE ROLE OF INTERMEDIARIES IN THE SUPPLY CHAIN



Vertically related food chain.

II. THE ROLE OF INTERMEDIARIES IN THE SUPPLY CHAIN

- We argue that the presence of powerful intermediaries in the supply chain can negatively affect efforts to reach global free trade
- Reasons:
 - Increasing marginal cost
 - Policy biases
 - Asymmetry
- In order to model imperfection related to intermediaries, an extension of the International Trade Network developed by Goyal and Joshi (2006) is proposed
- The original model predicts that bilateral agreements will lead to global free trade
- The extended version with intermediaries puts in doubt this optimistic outcome in agriculture

Node = Country Link = bilateral agreement

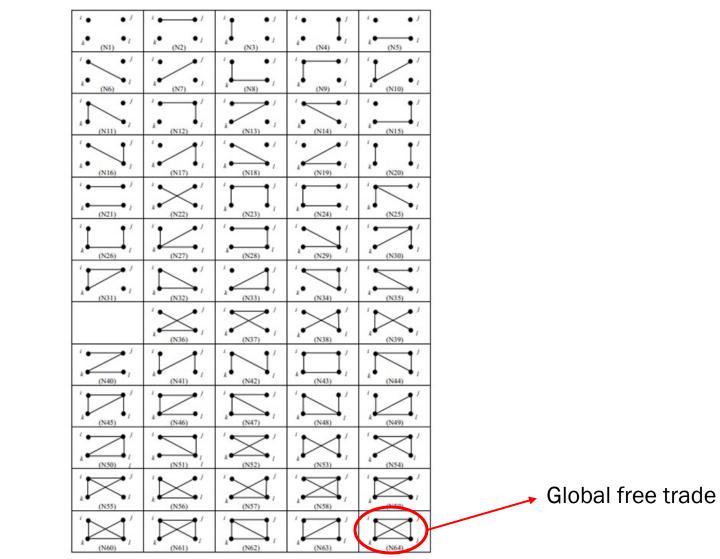
- The proposed model accommodates the following aspects observed in the food and agricultural sector:
 - Market power caused by intermediaries: oligopoly and oligopsony
 - Political economy: we account more for the role of firms in the food industry and their role in trade policy.
 - Asymmetry in market size

• The farming sector

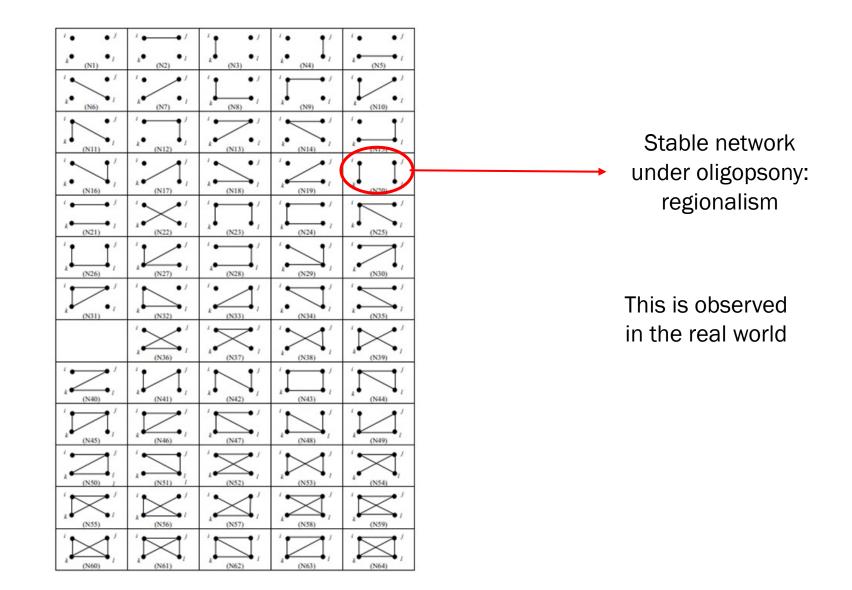
$$P_j^f(g) = \gamma_j + \theta q_j^f(g)$$

Intermediaries

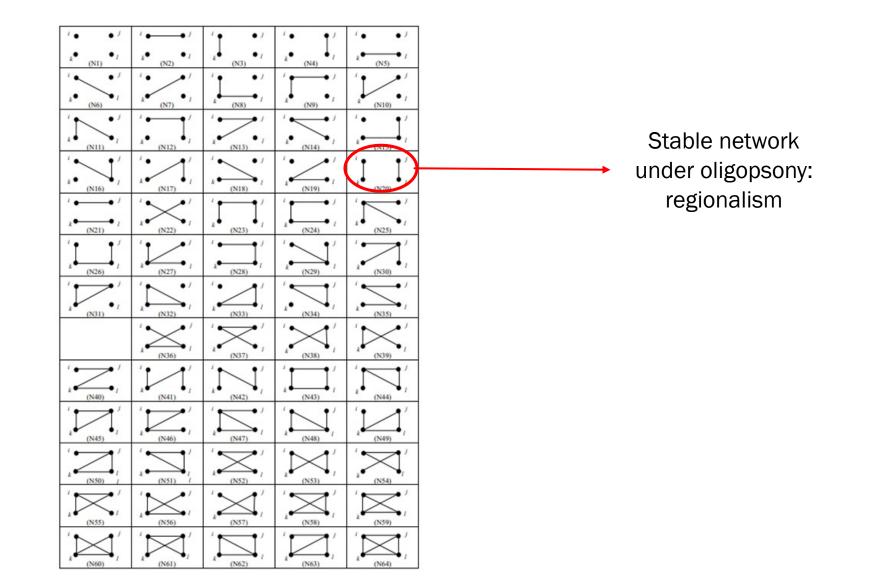
$$\pi_{i}^{j}(g) = q_{i}^{j}(g) \left(\alpha_{i} - \sum_{jN_{i}(g)} q_{i}^{j}(g) - \sum_{kN_{i}(g)} q_{i}^{k}(g) \right) - \theta q_{i}^{j2} - \theta q_{i}^{j}(g) q_{j-i}(g) - \gamma_{j} q_{i}^{j}(g)$$


Consumers

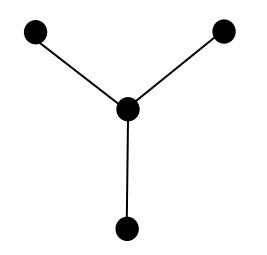
$$CS_i(g) = \frac{1}{2}Q_i^2(g)$$


Government

$$W_i(g) = a_i CS_i(g) + b_i \pi_i(g) + c_i PS_i(g) + d_i TR_i(g)$$


- Given the complexity of the model, simulations were carried out assuming a world formed of four countries
- The number of possible networks that can be formed with these countries are shown as follows:

		on 1 ($\alpha = 2$ for α a = c = b = d = 1 $\theta = 0$ in E	· ·		Simulation 2 ($\alpha = 2$ for i and k ; $\alpha = 1$ for j and l) a = c = b = d = 1 in Equation 13 $\theta = 2$ in Equation 1			
Network	Country <i>į</i>	Country j	Country k	Country <i>l</i>	Country <u>i</u>	Country j	Country k	Country <i>l</i>
N3	1.7665	0.5424	1.7665	0.5424	0.6592	0.2214	0.6592	0.2214
N4	1.7007	0.5036	1.7007	0.5036	0.6246	0.2036	0.6246	0.2036
N20	1.7813	0.5625	1.7813	0.5625	0.6551	0.2246	0.6551	0.2246
N23	1.7718	0.6769	1.7209	0.5573	0.6260	0.3055	0.6299	0.2301
N26	1.7209	0.5573	1.7718	0.6769	0.6299	0.2301	0.6260	0.3055
N41	1.7209	0.6769	1.7718	0.5573	0.6299	0.3055	0.6260	0.2301
N42	1.7718	0.5573	1.7209	0.6769	0.6260	0.2301	0.6299	0.3055
N58	1.6125	0.7740	1.6125	0.7740	0.5453	0.3646	0.5453	0.3646
N59	1.6935	0.7031	1.6935	0.7031	0.5763	0.3478	0.5763	0.3478
N60	1.6777	0.6379	1.7137	0.7537	0.5915	0.2990	0.5876	0.3561
N61	1.7137	0.7537	1.6777	0.6379	0.5876	0.3561	0.5915	0.2990
N62	1.7137	0.6379	1.6777	0.7537	0.5876	0.2990	0.5915	0.3561
N63	1.6777	0.7537	1.7137	0.6379	0.5915	0.3561	0.5876	0.2990
N64	1.6800	0.7200	1.6800	0.7200	0.5763	0.3478	0.5763	0.3478



	$\mathbf{a} = \mathbf{b} = \mathbf{d} =$	on 3 ($\alpha = 2$ for i 1, and c = 1.2 1, and c = 0.8 $\theta = 0$ in E	for <i>i</i> and <i>k</i> in E	quation 13	Simulation 4 ($\alpha = 2$ for i and k ; $\alpha = 1$ for j and l) a = b = d = 1, and $c = 1.2$ for i and k in Equation 13 a = b = d = 1, and $c = 0.8$ for j and l in Equation 13 $\theta = 2$ in Equation 1			
Network	Country <i>i</i>	Country j	Country k	Country l	Country <i>i</i>	Country j	Country k	Country l
N3	1.7665	0.5424	1.7665	0.5424	0.6927	0.1984	0.6927	0.1984
N4	1.7007	0.5036	1.7007	0.5036	0.6524	0.1819	0.6524	0.1819
N20	1.7813	0.5625	1.7813	0.5625	0.6893	0.2005	0.6893	0.2005
N23	1.7718	0.6769	1.7209	0.5573	0.6592	0.2771	0.6631	0.2053
N26	1.7209	0.5573	1.7718	0.6769	0.6631	0.2053	0.6592	0.2771
N41	1.7209	0.6769	1.7718	0.5573	0.6631	0.2771	0.6592	0.2053
N42	1.7718	0.5573	1.7209	0.6769	0.6592	0.2053	0.6631	0.2771
N58	1.6125	0.7740	1.6125	0.7740	0.5738	0.3322	0.5738	0.3322
N59	1.6935	0.7031	1.6935	0.7031	0.6083	0.3158	0.6083	0.3158
N60	1.6777	0.6379	1.7137	0.7537	0.6236	0.2701	0.6199	0.3239
N61	1.7137	0.7537	1.6777	0.6379	0.6199	0.3239	0.6236	0.2701
N62	1.7137	0.6379	1.6777	0.7537	0.6199	0.2701	0.6236	0.3239
N63	1.6777	0.7537	1.7137	0.6379	0.6236	0.3239	0.6199	0.2701
N64	1.6800	0.7200	1.6800	0.7200	0.6083	0.3158	0.6083	0.3158

V. EXTENSIONS

• <u>Centrality</u>: explains lack of a global agreement in agriculture

V. EXTENSIONS

- Side payments (intra and inter-nodes): Strategy to rich global free trade
- <u>Asymmetry in farmers' productivity</u>: Leads to regionalism
- Product differentiation: ongoing
- Calibration with real data: ongoing

Thanks